陈杰 长聘教授博导 邮箱:jie@tongji.edu.cn 联系方式:上海市杨浦区赤峰路67号第一实验楼509室 |
2007 - 2011,新加坡国立大学,物理学,博士
2005 - 2007,南京大学,声学,硕士2001 - 2005,南京大学,声学,学士
2021 - 至今, 同济大学,物理科学与工程学院,副院长(科研)
2018 - 至今, 同济大学,物理科学与工程学院,长聘教授
2015 - 2017,同济大学,物理科学与工程学院,“领航计划”特聘研究员2011 - 2013,新加坡国立大学,物理系,博士后
凝聚态物理新进展
人工智能与物理学交叉前沿
声子调控和输运
二维材料的热输运性质
热电材料及热界面材料分子动力学模拟
招聘信息
常年择优招收博士后1-2名,提供有竞争力的薪酬,有意者欢迎与我联系(jie@tongji.edu.cn)。
在研科研项目
1. 国家自然科学基金(面上项目),批准号:12475037, 2025-2028,主持。
2. 国家自然科学基金(面上项目),批准号:12075168, 2021-2024,主持。
3. 上海市曙光计划,2024-2025,主持。
2. 上海市自然科学基金(探索类),批准号:17ZR1448000, 2017-2020,主持。
3. 上海市自然科学基金(探索类),批准号:19ZR1478600, 2019-2022,主持。
4. 国家重点研发计划,批准号:2017YFB0406004, 2017-2021,参与。
5. 国家自然科学基金重大项目,批准号:11890703, 2019-2023,参与。
课题组网站
https://physics.tongji.edu.cn/Nanophononics/
《AIP Publishing》网站在线报道
https://mp.weixin.qq.com/s/Jy86tBPIvbcHb5cK4XCJwg
《同济要闻》网站在线报道
https://news.tongji.edu.cn/info/1002/80751.htm
《同济快讯》网站在线报道
https://news.tongji.edu.cn/info/1003/85412.htm
同济大学“卓越研究生导学团队标兵”
同济大学“卓越研究生导学团队标兵” (2024)
上海市曙光计划(2023)
Vebleo Fellow (2022)
国家级青年人才(2015)
瑞士苏黎世联邦理工学院 ETH Fellow (2013-2015)
新加坡国立大学优秀博士论文奖(2012)新加坡国立大学校长博士研究生奖(2007-2011)
上海市青年五四奖章(2021)
上海市教卫工作系统先进基层党组织(2021)
同济大学“双带头人”党支部书记陈杰工作室(2020)
同济青年五四奖章(2020)
南京大学优秀本科毕业生(2005)
全国热传导研讨会(WTT)组委会委员
中国工程热物理学会传热传质分会青年工作委员会首届委员
美国物理学会会员
已发表SCI论文80余篇,包括ESI高被引论文10篇和ESI热点论文3篇。
论文引用情况:
Google Scholar:总引用超7000余次,H-index: 44。
Web of Science:总引用超5300余次,H-index: 41。
Google Scholar:https://scholar.google.ch/citations?user=rQ_iitwAAAAJ&hl=en
Web of Science:https://webofscience.clarivate.cn/wos/author/record/317061
ORCID: http://orcid.org/0000-0003-4599-3600
代表性论文(†同等贡献, *通讯作者)
2024
46. S. Lu, Z. Zhang, Y. Li*, P. Hänggi, and J. Chen*, Phononic metagrating for lattice wave manipulation, Physical Review B, 109, 075404 (2024).
45. J. He, C. Yu, S. Lu, Z. Zhang*, and J. Chen*, Importance of hydrogen bond configuration on lattice thermal conductivity of hydrogenated borophene, Applied Physics Letters, 124, 022201 (2024).
44. J. He, C. Yu, S. Lu, S. Shan, Z. Zhang*, and J. Chen*, Complex role of strain engineering of lattice thermal conductivity in hydrogenated graphene-like borophene induced by high-order phonon anharmonicity, Nanotechnology, 35, 025703 (2024).
2023
43. W. Ren, S. Lu, C. Yu, J. He, Z. Zhang, J. Chen*, and G. Zhang*, The Impact of Moiré Superlattice on Atomic Stress and Thermal Transport in van der Waals Heterostructures, Applied Physics Reviews, 10, 041404 (2023). (ESI Hot Paper & ESI Highly Cited Paper)
42. J. Jiang, S. Lu, and J. Chen*, Phonon focusing effect in an atomic level triangular structure, Chinese Physics Letters, 40, 096301 (2023).
41. W. Ren, S. Lu, C. Yu, J. He, and J. Chen*, Carbon honeycomb structure with high axial thermal transport and strong robustness, Rare Metals, 42, 2679–2687 (2023).
40. C. Yu, S. Shan, S. Lu, Z. Zhang*, and J. Chen*, Characteristics of distinct thermal transport behaviors in single-layer and multilayer graphene, Physical Review B, 107, 165424 (2023).
39. Z. Zhang, Y. Guo, M. Bescond, M. Nomura, S. Volz*, and J. Chen*, Assessing phonon coherence using spectroscopy, Physical Review B, 107, 155426 (2023).
2022
38. J. Chen*, X. Xu*, J. Zhou*, and B. Li*, Interfacial thermal resistance: Past, present, and future, Reviews of Modern Physics, 94, 025002 (2022). (ESI Hot Paper & ESI Highly Cited Paper)
37. Z. Zhang*, Y. Guo, M. Bescond, J. Chen*, M. Nomura, and S. Volz*, Heat Conduction Theory Including Phonon Coherence, Physical Review Letters, 128, 015901 (2022). (ESI Highly Cited Paper)
36. J. Chen, J. He, D. Pan, X. Wang, N. Yang, J. Zhu, S. A. Yang, and G. Zhang*, Emerging theory and phenomena in thermal conduction: A selective review, SCIENCE CHINA Physics, Mechanics & Astronomy, 65, 117002 (2022). (ESI Highly Cited Paper)
35. Z. Zhang*, Y. Guo, M. Bescond, J. Chen*, M. Nomura, and S. Volz*, How coherence is governing diffuson heat transfer in amorphous solids, npj Computational Materials, 8, 96 (2022).
34. W. Ren, J. Chen*, and G. Zhang*, Phonon physics in twisted two-dimensional materials, Applied Physics Letters, 121, 140501 (2022). (Editor's Pick)
33. J. He, Y. Hu, D. Li, and J. Chen*, Ultra-low lattice thermal conductivity and promising thermoelectric figure of merit in borophene via chlorination, Nano Research, 15, 3804−3811 (2022).
32. S. Lu, W. Ren, J. He, C. Yu, P. Jiang, and J. Chen*, Enhancement of the lattice thermal conductivity of two-dimensional functionalized MXenes by inversion symmetry breaking, Physical Review B, 105, 165301 (2022).
31. Y. Ouyang, C. Yu, J. He, P. Jiang, W. Ren, and J. Chen*, Accurate description of high-order phonon anharmonicity and lattice thermal conductivity from molecular dynamics simulations with machine learning potential, Physical Review B, 105, 115202 (2022). (ESI Highly Cited Paper)
30. C. Yu†, Y. Hu†, J. He, S. Lu, D. Li*, and J. Chen*, Strong four-phonon scattering in monolayer and hydrogenated bilayer BAs with horizontal mirror symmetry, Applied Physics Letters, 120, 132201 (2022). (ESI Highly Cited Paper)
2021
29. W. Ren, Y. Ouyang, P. Jiang, C. Yu, J. He, and J. Chen*, The Impact of Interlayer Rotation on Thermal Transport Across Graphene/Hexagonal Boron Nitride van der Waals Heterostructure, Nano Letters, 21, 2634−2641 (2021). (ESI Highly Cited Paper)
28. Y. Ouyang†, C. Yu†, G. Yan*, and J. Chen*, Machine learning approach for the prediction and optimization of thermal transport properties, Frontiers of Physics, 16, 43200 (2021).
27. P. Jiang, Y. Ouyang, W. Ren, C. Yu, J. He, and J. Chen*, Total-transmission and total-reflection of individual phonons in phononic crystal nanostructures, APL Materials, 9, 040703 (2021).
26. C. Yu, Y. Ouyang, and J. Chen*, A perspective on the hydrodynamic phonon transport in two-dimensional materials, Journal of Applied Physics, 130, 010902 (2021).
25. Z. Zhang, Y. Guo, M. Bescond, J. Chen*, M. Nomura*, and S. Volz*, Generalized decay law for particlelike and wavelike thermal phonons, Physical Review B, 103, 184307 (2021).
2020
24. Z. Zhang, Y. Ouyang, Y. Cheng, J. Chen*, N. Li*, and G. Zhang*, Size-dependent phononic thermal transport in low-dimensional nanomaterials, Physics Reports, 860, 1-26 (2020). (ESI Hot Paper & ESI Highly Cited Paper)
23. Z. Zhang, Y. Ouyang, Y. Guo, T.
Nakayama, M. Nomura, S. Volz*, and J.
Chen*, Hydrodynamic phonon transport in bulk crystalline polymers, Physical Review B, 102, 195302 (2020).
22. Z. Zhang, S. Hu, Q. Xi, T. Nakayama, S. Volz, J. Chen*, and B. Li, Tunable phonon nanocapacitor built by carbon schwarzite based host-guest system, Physical Review B, 101, 081402(R) (2020).
21. P. Jiang, S. Hu, Y. Ouyang, W. Ren, C. Yu, Z. Zhang, and J. Chen*, Remarkable thermal rectification in pristine and symmetric monolayer graphene enabled by asymmetric thermal contact, Journal of Applied Physics, 127, 235101 (2020).
20. Y. Ouyang, Z. Zhang, C. Yu, J. He, G. Yan, and J. Chen*, Accuracy of Machine Learning Potential for Predictions of Multiple-Target Physical Properties, Chinese Physics Letters, 37, 126301 (2020). (Editor’s Suggestion)
19. X. Xu, J. Zhou*, J. Chen*, Thermal Transport in Conductive Polymer-Based Materials, Adv. Funct. Mater., 30, 1904704 (2020).
2019
18. Y. Ouyang, Z. Zhang, Q. Xi, P. Jiang, W. Ren, N. Li, J. Zhou, and J. Chen*, Effect of boundary chain folding on thermal conductivity of lamellar amorphous polyethylene, RSC Advances, 9, 33549–33557 (2019).
17. S. Hu, Z. Zhang, P. Jiang, W. Ren, C. Yu, J. Shiomi, and J. Chen*, Disorder limits the coherent phonon transport in two-dimensional phononic crystal structures, Nanoscale, 11, 11839-11846 (2019).
16. Y. Ouyang, Z. Zhang, D. Li, J. Chen*, and G. Zhang*, Emerging Theory, Materials, and Screening Methods: New Opportunities for Promoting Thermoelectric Performance, Annalen Der Physik, 531, 1800437 (2019).
15. S. Hu†, Z. Zhang†, P. Jiang, J. Chen*, S. Volz*, M. Nomura, and B. Li*, Randomness-Induced Phonon Localization in Graphene Heat Conduction, J. Phys. Chem. Lett., 9, 3959-3968 (2018).
14. Z. Zhang, S. Hu, T. Nakayama, J. Chen*, and B. Li, Reducing lattice thermal conductivity in schwarzites via engineering the hybridized phonon modes, Carbon, 139, 289-298 (2018).12. X. Xu, J. Chen*, J. Zhou*, and B. Li, Thermal Conductivity of Polymers and Their Nanocomposites, Adv. Mater., 30, 1705544 (2018). (ESI Highly Cited Paper)
11. Z. Zhang, J. Chen*, and B. Li*, Negative Gaussian curvature induces significant suppression of thermal conduction in carbon crystals, Nanoscale, 9, 14208-14214 (2017).
10. H. Wang†, S. Hu†, K. Takahashi, X. Zhang*, H. Takamatsu*, and J. Chen*, Experimental study of thermal rectification in suspended monolayer graphene, Nat. Commun., 8, 15843 (2017). (ESI Highly Cited Paper)8. S. Hu, J. Chen*, N. Yang, and B. Li*, Thermal transport in graphene with defect and doping: Phonon modes analysis. Carbon 116, 139-144 (2017).
7. J. Chen*, J. H. Walther*, and P. Koumoutsakos*, Covalently bonded graphene-carbon nanotube hybrid for high-performance thermal interfaces. Adv. Funct. Mater., 25, 7539 (2015).
6. D. Alexeev†, J. Chen†, J. H. Walther, K. P. Giapis, P. Angelikopoulos, and P. Koumoutsakos*, Kapitza resistance between few-layer graphene and water: Liquid layering effects. Nano Lett., 15, 5744 (2015).Prior 2015
5. J. Chen, J. H. Walther, and P. Koumoutsakos*, Strain engineering of Kapitza resistance in few-layer graphene. Nano Lett., 14, 819 (2014).
4. J. Chen*, G. Zhang*, and B. Li*, Substrate coupling suppresses size dependence of thermal conductivity in supported graphene. Nanoscale, 5, 532 (2013).